Hierarchical porous Ni@boehmite/nickel aluminum oxide flakes with enhanced microwave absorption ability.

نویسندگان

  • Biao Zhao
  • Junwei Liu
  • Xiaoqin Guo
  • Wanyu Zhao
  • Luyang Liang
  • Chao Ma
  • Rui Zhang
چکیده

In this article, composites consisting of porous Ni cores coated with boehmite/nickel aluminum oxide nanoflakes were successfully prepared by a versatile method. The crystal constituents and shapes of the boehmite/nickel aluminum oxide nanoflakes were strongly influenced by reaction temperature, and their microwave absorption properties were investigated in terms of complex permittivity and permeability. The results reveal that the composites comprising porous Ni cores coated with boehmite/nickel aluminum oxide synthesized at 180 °C present superior absorption properties. The optimal reflection loss is -44.3 dB (>99.99% attenuation) at 14.4 GHz, and the effective absorption (below -10 dB) bandwidth can be monitored in the frequency range of 5.8-18.0 GHz for an absorber with thickness in the range of 1.5-3.5 mm. The high dissipation capability, good impedance match and multiple reflection of the porous flaky structure are responsible for the improvement in microwave absorption. Moreover, a new absorption mechanism was proposed for the porous structure. In this mechanism, the porous structure serves as a spreading container, which attenuates electromagnetic energy by prolonging the travel path and constrains waves in the void space to gradually consume energy. This method paves a new avenue to design porous magnetic-dielectric absorbing materials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Atomic-layer-deposition alumina induced carbon on porous Ni(x)Co(1-x)O nanonets for enhanced pseudocapacitive and Li-ion storage performance.

A unique composite nanonet of metal oxide@carbon interconnected sheets is obtained by atomic layer deposition (ALD)-assisted fabrication. In this nanonet structure, mesoporous metal oxide nanosheets are covered by a layer of amorphous carbon nanoflakes. Specifically, quasi-vertical aligned and mesoporous Ni(x)Co(1-x)O nanosheets are first fabricated directly on nickel foam substrates by a hydro...

متن کامل

Facile synthesis and enhanced microwave absorption properties of novel hierarchical heterostructures based on a Ni microsphere-CuO nano-rice core-shell composite.

A novel hierarchical heterostructure of Ni microspheres-CuO nano-rices was fabricated using a simple two-step process. The CuO rices were densely deposited on the surfaces of Ni microspheres. The phase purity, morphology, and structure of composite heterostructures are characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectros...

متن کامل

Corrosive synthesis and enhanced electromagnetic absorption properties of hollow porous Ni/SnO2 hybrids.

In this study, novel porous hollow Ni/SnO2 hybrids were prepared by a facile and flexible two-step approach composed of solution reduction and subsequent reaction-induced acid corrosion. In our protocol, it can be found that the hydrothermal temperature exerts a vital influence on the phase crystal and morphology of Ni/SnO2 hybrids. Notably, the Ni microspheres might be completely corroded in t...

متن کامل

Ag-nanoparticles-decorated NiO-nanoflakes grafted Ni-nanorod arrays stuck out of porous AAO as effective SERS substrates.

NiO-nanoflakes (NiO-NFs) grafted Ni-nanorod (Ni-NR) arrays stuck out of the porous anodic aluminum oxide (AAO) template are achieved by a combinatorial process of AAO-confined electrodeposition of Ni-NRs, selectively etching part of the AAO template to expose the Ni-NRs, wet-etching the exposed Ni-NRs in ammonia to obtain Ni(OH)2-NFs grafted onto the cone-shaped Ni-NRs, and annealing to transfo...

متن کامل

Hierarchical structures of AlOOH nanoflakes nested on Si nanopillars with anti-reflectance and superhydrophobicity.

A novel method to fabricate ultra-low reflective Si surfaces with nanoscale hierarchical structures is developed by the combination of AlOOH or boehmite nanoflakes nested on plasma-etched Si nanopillars. Using CF4 plasma etching, Si surfaces are nanostructured with pillar-like structures by selective etching with self-masking by fluorocarbon residues. AlOOH nanoflakes are formed by Al thin film...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 19 13  شماره 

صفحات  -

تاریخ انتشار 2017